

The dark side of low(ering) interest rates

Pablo Guerron and Keith Kuester

April 3, 2018

Boston College - U Bonn

Introduction

Motivation: Benefits under pressure

Pension deficits reach a record £459bn as interest rate cut bites

(f 🏎) 🟏 (in) 🖾

Your retirement ... # NBC NEWS.com

Low interest rates squeezing pension funds

America's Greece?

Illinois risks default if it fails to tackle its public-pension crisis

Motivation: Retirement savings under pressure

Benefits under pressure: European Union

Figure 1: Projected public pension benefit ratio. Average pension relative to average wages. Projected change. Source: European Commission 2015 Aging Report.

Motivation I

- Stylized facts
 - falling social security,
 - rising importance of private saving in retirement income,
- We ask what the implications are for monetary policy.

Research questions

- o Do we have to rethink monetary policy making?
- The answer is a yes, to some extent.
- "Will expansionary monetary policy" remain "expansionary" if the fiscal government recedes?
- Will price stability-oriented monetary policy be able to anchor the price level and real activity?
- The answer is a qualified no. Monetary policy may need to react more strongly to inflation

The channel we emphasize

- The "standard" New Keynesian model emphasizes substitution effects for monetary transmission:
 - When prices are rigid, lower nominal interest rates mean lower real rates.
 - Households substitute intertemporally, wish to save less: current demand rises, output expands.
- Our paper adds to this a wealth view:
 - households save for retirement.
 - lower real rates mean a negative wealth effect.
 - if social security recedes, private saving will cover a bigger part of retirement consumption.
 - the role of the wealth effect rises.

What we do

- Aggregate demand, then, depends on reaction of borrowers: if they do not expand consumption sufficiently, aggregate demand falls.
- Potential for Keynesian "paradox of thrift."
- o This paper is not about secular stagnation.
- Analyze how monetary policy works when private savings for retirement matter.
- o Toward this end, use OLG model with
 - 1. Nominal frictions,
 - 2. Inside debt.
 - 3. Financial frictions (borrowing constraints),
 - 4. Hump-shaped income profile.
 - Partially done: provide a quantitative analysis.

Literature

- Secular stagnation: Eggertsson and Mehrotra, Guerron- Quintana and Jinnai, Summers.
- o Monetary policy: CEE, Woodford.
- o OLG Lifecycle: Samuelson, Blanchard, Bullard et al.
- Paradoxes in NK or OK models: Gali's bubble paper, Hall's missing deflation, Del Negro's forward looking puzzle, Keynes' paradox of thrift.

Model

Main ingredients

- o Parsimonious OLG model to illustrate mechanism.
- We build on Eggertsson and Mehrotra (2014)
- Time is discrete t = 0, 1, 2,
- o Three generations of households, each with unit mass: Young (y), middle-aged (m), and old (o).
- \circ Households get income, work; save and borrow at rate R_t .
- o Inside debt only instrument used for savings.

Preferences

• Life-time utility for an individual born in period t:

$$E_t\left\{u\left(c_t^y,\overline{c}^y,h_t^y\right)+\beta\cdot u\left(c_{t+1}^m,\overline{c}^m,h_{t+1}^m\right)+\beta^2\cdot u\left(c_{t+2}^o,\overline{c}^o,h_{t+2}^o\right)\right\}.$$

- o c_t^y consumption young, c_t^m consumption middle-aged, c_t^o old-age consumption.
- $\circ \ \overline{c}^y$, \overline{c}^m , and \overline{c}^o exogenous minimum consumption threshold.
- o h_t^y , h_t^m , h_t^o are hours worked.

Incomes and endowments I

- o Consumers purchase homogenous goods.
- o Produced in the same period, or endowments.
- o Tradable between households, but not storable over time.
- Each generation is endowed with home production $\omega_y \geq 0$, $\omega_m \geq 0$ and $\omega_o \geq 0$, respectively.
- o Social security tax τ_t^y , τ_t^m , and τ_t^o , lump-sum, positive or negative.
- Households borrow when young, save when middle-aged, and dissave in old age.

Incomes and endowments II

o budget constraint for the young

$$c_t^y = d_t^y + \omega_y - \tau_t^y + w_t h_t^y.$$

- o On the income side, the young borrow, have an endowment ω_y , pay social security taxes τ_t^y , derive labor labor income (with w_t being the competitive real wage).
- We will assume that there is a borrowing limit \overline{d}_t , such that $d_t^y \leq \overline{d}_t$ always.

Incomes and endowments III

budget constraint for the middle-aged

$$c_t^m + b_t^m + d_{t-1}^y \frac{R_{t-1}}{\Pi_t} \le \omega_m - \tau_t^m + w_t h_t^m + \Gamma_t.$$

- Expenditure side: consumption in middle age and saving for retirement
 repaying debts incurred when young.
- o Income side: endowment ω_m , social security taxes τ_t^m , and income from working.
- Last, each middle-aged household is endowed with equity of a portfolio of one-period lived firms.

Incomes and endowments IV

budget constraint of the old

$$c_{t}^{o} \leq \omega_{o} - \tau_{t}^{o} + w_{t}h_{t}^{o} + b_{t-1}^{m} \frac{R_{t-1}}{\Pi_{t}}$$

 The old consume their endowment after taxes, any income they may have from working, and their savings.

Production I

- Two types of firms: final goods and intermediate goods.
- <u>respresentative final goods producer</u> purchases intermediate goods, produce homogenous consumption good.
- Dixit-Stiglitz production function

$$y_t = \left(\int_0^1 y_t(j)^{\frac{\theta-1}{\theta}} dj\right)^{\frac{\theta}{\theta-1}}, \ \theta > 1.$$

- o demand function for good j is $y_t(j) = (P_t(j)/P_t)^{-\theta}y_t$.
- Aggregate price level being $P_t = \left(\int_0^1 P_t(j)^{1-\theta} dj\right)^{\frac{1}{1-\theta}}$.

Production II

- Intermediate goods produced by unit mass of intermediate goods firms, indexed by $j \in (0,1)$.
- Production function $y_t(j) = zh_t(j)$, z labor productivity and $h_t(j)$ hours worked hired by firm j.
- sells output in a monopolistically competitive market, subject to Rotemberg quadratic price adjustment costs.
- the problem of intermediate goods producer j

$$\max_{P_t(j)} \left(\frac{P_t(j)}{P_t}\right)^{1-\theta} y_t - \left(\frac{P_t(j)}{P_t}\right)^{-\theta} y_t \frac{w_t}{z_t} - \frac{\phi_p}{2} y_t \left(\frac{P_t(j)}{P_{t-1}(j)} - \overline{\Pi}\right)^2 - \frac{\phi_p}{2} y_t \beta \mathcal{E}_t \left\{ \left(\frac{P_{t+1}(j)}{P_t(j)} - \overline{\Pi}\right)^2 \right\}.$$

Parameter $\phi_p > 0$ indexes the price adjustment costs.

Production III

 the first-order condition for price setting by intermediate-goods firms takes the form

$$\Pi_t(\Pi_t - \overline{\Pi}) = \beta E_t \left\{ \Pi_{t+1}(\Pi_{t+1} - \overline{\Pi}) \right\} + \frac{\theta}{\phi_p} \left[\frac{w_t}{z_t} - \frac{\theta - 1}{\theta} \right].$$

Aggregate profits are given by

$$\Gamma_t = \int_0^1 \left[\frac{P_t(j) y_t(j)}{P_t} - w_t h_t(j) - \frac{\phi_p}{2} y_t \left(\frac{P_t(j)}{P_{t-1}(j)} - \overline{\Pi} \right)^2 - \frac{\phi_p}{2} y_t \beta E_t \left\{ \left(\frac{P_{t+1}(j)}{P_t(j)} - \overline{\Pi} \right)^2 \right\} \right] dj.$$

Monetary policy

o Central bank controls nominal interest rate. Taylor rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\phi_R} \cdot \left(\frac{\Pi_t}{\overline{\Pi}}\right)^{\phi_\Pi(1-\phi_R)} \cdot \exp\{e_t\}, \ \phi_R \in [0,1), \phi_\Pi > 1.$$

- Links deviations of the current gross interest R_t from its steady-state value R to past interest rates and deviations of inflation from target.
- Throughout the paper: steady-state natural rate accounted for; abstract from ZLB.
- Two questions:
 - Transmission of monetary shock e_t?
 - Does $\phi_{\Pi} > 1$ ensure determinacy?

Fiscal policy

The social security system runs a balanced budget

$$\tau_t^y + \tau_t^m + \tau_t^o = 0.$$

Equilibrium and market clearing

• Symmetry: $P_t(j) = P_t$ for all firms j.

$$y_t(j) = y_t, \ h_t(j) = h_t.$$

o Market clearing for final goods, then, means that

$$y_t + (\omega_y + \omega_m + \omega_o) = (c_t^y + c_t^m + c_t^o) + y_t \frac{\phi_p}{2} \left[\left(\Pi_t - \overline{\Pi} \right)^2 + \beta E_t \left\{ \left(\Pi_{t+1} - \overline{\Pi} \right)^2 \right\} \right],$$

The labor market clears if

$$h_t = h_t^y + h_t^m + h_t^o.$$

Bond-market clearing requires

$$d_t^y = b_t^m$$
.

Analytics

Preferences I

For CRRA preferences,

$$u(c,\overline{c},h) = \frac{(c-\overline{c})^{1-\sigma}-1}{1-\sigma} - \psi \frac{h^{1+\nu}}{1+\nu},$$

Consumption Euler equations

$$\tilde{c}_t^m = \frac{c^m - \overline{c}^m}{c^o - \overline{c}^o} E_t \tilde{c}_{t+1}^o - \frac{1}{\sigma} (c^m - \overline{c}^m) E_t \{ \widehat{R}_t - E_t \widehat{\Pi}_{t+1} \},$$

o the labor supply FOC is given by

$$\widehat{w}_t = \frac{\nu}{h^m} \widetilde{h}_t^m + \frac{\sigma}{c^m - \overline{c}^m} \widetilde{c}_t^m.$$

Preview

- Focus on two cases: private retirement savings small or retirement savings matter for retirement.
- o retirement savings small:
 - business as usual for monetary authority.
 - standard response to monetary easing.
- o retirement savings matter:
 - Taylor principle does not ensure unique equilibrium.
 - Even if equilibrium is unique: Output and inflation may fall after a monetary "easing"!

Simplifying assumptions

- To derive tractable results, unless noted otherwise, assume that only the middle-aged supply labor.
- o This means $h_y = 0$ and $h_o = 0$, so that the income of young and old does not depend on the response of the wage.

Binding borrowing constraint

Binding borrowing constraint I

$$\circ \ \widetilde{d}_t^y = \widetilde{\overline{d}}_t.$$

- Euler equation of the young not binding.
- What matters is behavior of middle-aged
- Combine the budget constraint old, and consumption Euler equation of middle-aged:

$$\widetilde{c}_t^m = \frac{c^m - \overline{c}^m}{c^o - \overline{c}^o} \left[\frac{R}{\Pi} \right] \widetilde{\overline{d}}_t - (c^m - \overline{c}^m) \left[\frac{1}{\sigma} - \frac{b^m \frac{R}{\Pi}}{c^o - \overline{c}^o} \right] E_t \left\{ \widehat{R}_t - \widehat{\Pi}_{t+1} \right\}.$$

Consumption by middle-aged I

 Consumption of the middle-aged will show a "conventional response" to lower real interest rates (that is, consumption of the middle-aged will rise) if

$$A:=\frac{1}{\sigma}-\frac{b^m\frac{R}{\Pi}}{c^o-\overline{c}^o}>0.$$

- Term $1/\sigma$ substitution effect, unambiguously positive.
- The last term shows the income and wealth effect combined.
 Unambiguously positive.
- A's sign depends on the importance of private saving in effective retirement consumption.

Aggregate output I

- Use production function $\tilde{h}_t^m = \frac{1}{z}\tilde{y}_t$, and steady-state Phillips curve, $w = (\theta 1)/\theta z$.
- Labor supply FOC, Euler conditions, and resource constraints so that output evolves as

$$\begin{split} \widetilde{y}_{t} &= \left[1 + \frac{c^{m} - c^{m}_{h} R}{c^{o} - \overline{c}^{o} \Pi}\right] \widetilde{\overline{d}}_{t} + \frac{R}{\Pi} \widetilde{\overline{d}}_{t-1} \\ &- \left(c^{m} - c^{m}_{h}\right) \left[\frac{1}{\sigma} - \frac{b_{m} \frac{R}{\Pi}}{c^{o} - \overline{c}^{o}}\right] E_{t} \left\{\widehat{R}_{t} - \widehat{\Pi}_{t+1}\right\} \\ &+ b^{m} \frac{R}{\Pi} \left[\widehat{R}_{t-1} - \widehat{\Pi}_{t}\right] \\ &- \widetilde{\tau}_{t}^{y} - \widetilde{\tau}_{t}^{o}. \end{split}$$

o the aggregate stimulus derived off a reduction in the real rate of interest all else equal is decreasing in the extent to which households rely on own savings (b_m) for old-age consumption.

Two limiting cases

Highlight implications analytically for two limiting cases:

- o perfectly rigid prices,
- o and perfectly elastic labor supply.

A special case: perfectly rigid prices I

- o For now, focus only on transmission of shock.
- Follow Werning (2015) and highlight implications of a change in the real interest rate.
- Central bank perfectly controls the real interest rate.
- o More formally, assume that prices are perfectly rigid $(\phi_p \to \infty)$. In that case, $\Pi_t = 1$ (and $\widehat{\Pi}_t = 0$) in all periods.

A special case: perfectly rigid prices II

 The central bank, by steering the nominal interest rate, directly steers aggregate demand.

$$\begin{split} \widetilde{y}_t &= \left[1 + \frac{c^m - c_h^m}{c^o - \overline{c}^o} \frac{R}{\Pi}\right] \widetilde{\overline{d}}_t + \frac{R}{\Pi} \widetilde{\overline{d}}_{t-1} \\ &- \left(c^m - c_h^m\right) \left[\frac{1}{\sigma} - \frac{b_m \frac{R}{\Pi}}{c^o - \overline{c}^o}\right] \widehat{R}_t + b^m \frac{R}{\Pi} \widehat{R}_{t-1} \\ &- \widetilde{\tau}_t^y - \widetilde{\tau}_t^o. \end{split}$$

A special case: perfectly rigid prices III

Proposition

Consider the three-period OLG model described above. Suppose that prices are perfectly rigid, $\phi_P \to \infty$, $\phi_R \in (0,1)$, and the borrowing constraint of the young always binds. Further, suppose that borrowing constraints are constant $\tilde{d}_t = 0$ and that that the economy initially is in its steady state. Consider the effect of a one-time monetary policy shock e_t in t=0, and no shocks afterwards. Then, up to first order, equilibrium output evolves according to

$$\begin{split} \widetilde{y}_0 &= -(c^m - c_h^m) \left[\frac{1}{\sigma} - \frac{b^m R}{c^o - \overline{c}^o} \right] \cdot \widehat{R}_0, \\ \widetilde{y}_t &= \phi_R^{t-1} \left[-(c^m - c_h^m) \left[\frac{1}{\sigma} - \frac{b^m R}{c^o - \overline{c}^o} \right] \phi_R + b^m R \right] \cdot \widehat{R}_0, \ t = 1, 2, \dots \end{split}$$

A special case: perfectly rigid prices IV

Corollary

Consider a persistent "monetary easing" $\widehat{R}_0 < 0$.

- a) A monetary easing will stimulate output the less, the more private saving $b_m R$ there is for old age.
- b) On impact, in t = 0, a monetary easing has an expansionary effect on output if A > 0. Otherwise, output will fall.
- c) Suppose A < 0. A monetary easing will be the more contractionary for output \widetilde{y}_t in t = 1, 2, ... the more persistent the easing is (the larger ϕ_R).
- The more households rely on own savings for retirement, the less expansionary the effect of a monetary easing on output.
- Up to the point, indeed, that a "monetary easing" becomes contractionary altogether.

Second special case: perfectly elastic labor supply I

- o let prices be less than perfectly rigid $0 < \phi_p < \infty$ but assume that labor supply is perfectly elastic $(\nu \to 0)$.
- o to see the implications for local determinacy, recall linearized New Keynesian Phillips curve, wage \widehat{w}_t is driving term.
- Combining the labor-supply first-order condition and the production function for intermediate goods, we have that

$$\widehat{w}_t = \frac{\nu}{y}\widetilde{y}_t + \frac{\sigma}{c^m - \overline{c}^m}\widetilde{c}_t^m.$$

Second special case: perfectly elastic labor supply II

- Since we will focus here on the case $\nu \to 0$, we will consider CRRA preferences only.
- o Then,

$$\widehat{\Pi}_{t} = \beta E_{t} \widehat{\Pi}_{t+1} - \frac{\theta - 1}{\phi_{p}} \sigma \left[\frac{1}{\sigma} - \frac{b^{m} \frac{R}{\Pi}}{c^{o} - \overline{c}^{o}} \right] [\widehat{R}_{t} - E_{t} \widehat{\Pi}_{t+1}].$$

 \circ Standard New Keynesian model: as long as $\phi_\Pi > 1$ (the Taylor principle) – inflation and output are uniquely determined. Self-fulfilling expectations cannot form.

Second special case: perfectly elastic labor supply III

- Key to this: interaction of central bank's reaction and the response of marginal costs. Non-fundamental belief of higher inflation would meet with central bank that raises real rate.
- Consumers substitute so as to save more and consume less, the wage falls – and with it marginal costs. This invalidates non-fundamental inflationary beliefs.
- Requires negative response of marginal costs to monetary tightening.
- Cannot be taken for granted.

Second special case: perfectly elastic labor supply IV

- o Whenever A < 0, that is, the wealth/income effect of an interest-rate change is strong enough, there could be scope for indeterminacy even if central bank obeys Taylor principle.
- Indeterminacy will be both nominal and real.
- Main message: in order to anchor inflation expectations when the government recedes from providing pensions, central bank may need to respond more strongly to inflation.

Proposition on indeterminacy

Proposition

 $u \to 0$ and CRRA preferences. Suppose that $\phi_R=0$. Borrowing constraints are constant. Let $\kappa:=(\theta-1)/\phi_P$.

- a) If A>0, a response of $\phi_\Pi>1$ (the Taylor principle) will ensure determinacy. Smaller responses may as well.
- b) If A<0 and $\beta+\kappa\sigma A>0$, there is determinacy for any $\phi_\Pi>0$, except if

$$1 + \frac{1 - \beta}{-\kappa \sigma A} < \phi_{\Pi} < -1 + \frac{1 + \beta}{-\kappa \sigma A}.$$

The lower threshold is larger than unity.

c) If A<0 and $\beta+\kappa\sigma A<0$, then there will be determinacy for any $\phi_\Pi>0$, except if

$$-1 + \frac{1+\beta}{-\kappa\sigma A} < \phi_\Pi < 1 + \frac{1-\beta}{-\kappa\sigma A}.$$

Note that the upper threshold is larger than unity.

(In)determinacy - the mechanism I

- \circ If income effect sufficiently strong, so that A < 0, Taylor principle no longer holds.
- If retirement savings are large-enough part of retirement consumption, real wage may *rise* with higher real rates.
- An example: Suppose households form non-fundamental beliefs of mean-reverting, but perhaps persistent, high inflation.
- Suppose the central bank raises the nominal interest rate sufficiently so that the real interest rate rises (the Taylor principle).
- When real rates are high, middle-aged households will want to work less (and consume more) since saving for retirement is provided for easily.
 The wage rises.

(In)determinacy - the mechanism II

- Thus, what can happen if the central bank reacts to a non-fundamental belief of inflation by raising the real rate of interest, is that precisely this validates these very beliefs.
- In other words, the Taylor principle may no longer guarantee a unique stable rational expectations equilibrium.

(In)determinacy – the mechanism III

 Two ways to anchor inflation expectations: the central bank could more strongly respond to inflation than the Taylor principle suggests, or by less

(In)determinacy – the mechanism IV

- o For sure, as $\phi_\Pi \to \infty$, the central bank would anchor inflation expectations and real activity.
- The underlying rationale differs from that of the conventional New Keynesian model, however.
- As the central bank embarks on a strong response to inflation, it makes sure that whenever non-fundamental inflation expectations form, there will be no *bounded* level of these expectations.
- If such beliefs formed, the central bank would strongly raise the real rate of interest, wages would strongly rise, and so would marginal costs, and so forth.

(In)determinacy – the mechanism V

- Another avenue for ensuring determinacy: any response to inflation that is small (!).
- o Any reaction of the central bank with ϕ_Π smaller (!) than unity will ensure determinacy, including the case of <u>constant</u> interest rates, $\phi_\Pi=0$, a sharp reversal of the conventional wisdom; for example, Sargent and Wallace (1975).

(In)determinacy - the mechanism VI

- When retirement savings are important (A < 0), inflationary beliefs can be self-regulating amid constant interest rates.
- Suppose inflationary beliefs formed and that the nominal interest rate were held constant. Then, the real interest rate would fall.
- The wealth effect being important, the middle-aged would want to work more, reducing the wage and marginal costs, in turn contradicting the beliefs of high inflation.
- o If the wage falls just enough, self-fulfilling expectations are ruled out.

(In)determinacy - the mechanism VII

• Item c) of the proposition shows that the constant interest-rate case is not fool-proof, however, whereas a strong response to inflation is.

Monetary transmission I

 The next proposition summarizes the response of inflation and output to a persistent monetary easing, provided that there is determinacy.

Monetary transmission II

Proposition

A monetary shock e_t that follows an AR(1) process with autocorrelation $\rho \in (0,1)$. The fundamental solution for inflation is given by $\widehat{\Pi}_t = a\epsilon_t^m$, with $a = -\kappa\sigma A/(1-\beta\rho + \kappa\sigma A(\phi_\Pi - \rho))$.

- a) Response of inflation. If A > 0 and the Taylor principle holds, the response of inflation will be conventional (a < 0).
- b) If A<0 and $\beta+\kappa\sigma A>0$, responses of ϕ_Π below the lower threshold given in the previous Proposition item b) will show an unconventional response of inflation, a>0, whereas response coefficients of ϕ_Π larger than the upper threshold ensures a conventional response.
- d) Response of output. Consider the case the $\rho=0$. Suppose that price rigidities are sufficiently large, such that $c^m>\overline{d}\frac{R}{\Pi}\kappa\sigma$. Suppose that there is determinacy. Output will rise following a monetary easing if A>0. If A<0, output rises only if $\phi_\Pi>\frac{1}{-\kappa A\sigma}$. Otherwise, the monetary easing is contractionary.

Slack borrowing constraints

Slack borrowing constraint I

- Next, we discuss the case when borrowing constraints on the young are slack.
- In order to be able to derive tractable analytical results, we continue to focus on the case in which only the middle-aged supply work.
- o In addition, we set $\beta=1$. We focus on a parameterization in which the effective endowment of young and old households is identical, namely, $\omega^y-\tau^y-\overline{c}^y=\omega^o-\tau^o-\overline{c}^o$. We also focus on a zero-inflation steady state.
- o For the case of perfectly rigid prices, we have

Slack borrowing constraint II

Proposition

Consider the three-period OLG model described above. Suppose that prices are perfectly rigid, and the borrowing constraint of the young never binds. Consider the effect of a persistent monetary policy shock \mathbf{e}_t in $\mathbf{t}=0$. Then, up to first order, saving evolves according to

$$\widetilde{b}_t^m = -\frac{1}{1-\phi_R}(c^y - \overline{c}^y) \left[\frac{1}{\sigma}(1+\phi_R) - \frac{b^m}{c_o - \overline{c}^o}\phi_R \right] \widehat{R}_t.$$

In addition, we have that

$$\widetilde{y}_0 = -(c^y - \overline{c}^y) \left[\frac{1}{\sigma} (3 + \phi_R) - \frac{b^m}{c_o - \overline{c}^o} (1 + \phi_R) \right] \frac{1}{1 - \phi_R} \widehat{R}_0$$

and

$$\tilde{y}_0 = -(c^y - \overline{c}^y) \left[\frac{1}{\sigma} (1 + 4\phi_R + \phi_R^2) - \frac{b^m}{c_o - \overline{c}^o} (1 + \phi_R + \phi_R^2) \right] \frac{1}{1 - \phi_R} \widehat{R}_t, \ t \ge 1$$

Slack borrowing constraint III

Corollary

Consider a "monetary easing" $\widehat{R}_0 < 0$.

- a) A monetary easing will stimulate output the less, the more of a role private saving b_m play in financing old-age.
- b) On impact, in t=0, a monetary easing has an expansionary effect on output if

$$\frac{1}{\sigma}(3+\phi_R)-\frac{b^m}{c_o-\overline{c}^o}(1+\phi_R)>0.$$

Otherwise, output will fall.

- **d)** Suppose that the steady state with and without borrowing constraints on the young is the same.
 - i) whenever impact response is expansionary with borrowing constraints, the impact response is expansionary without a borrowing constraint on the young. The reverse is not true.

Slack borrowing constraint IV

- Also without a binding borrowing constraint on the young, we have that a monetary "easing" can be contractionary.
- Such an outcome is less likely when the borrowing constraints of the young do not bind.

Summary: analytical results

- When the government retreats from social security, monetary policy may need to focus more on price-stability, so as to anchor inflation and economic activity.
- o A monetary "easing" need no longer be expansionary.
- Additional demand for savings by the middle-aged needs to be absorbed by additional demand for credit by the young.

Simulations

Simulations

- Lets uncover full dynamics based on a rough parametrization (more realistic model coming).
- o It will help visualize the models mechanism.

Parameters for simulations

Table 1: Parameters of 3-period OLG model

Par	. value	target	Par.	value	target
β	0.995	real rate of 1 percent	ϕ_{p}	367.4	Calvo stickiness of 0.85
ν	0.5	Frisch elasticity of 2	ϕ_{R}	0.85	interest rate persistence
ϵ	11	Markup of 10%	ϕ_{Π}	1.2	moderate response to inflation
<u>c</u>	0	arbitrary choice.	П	1	zero-inflation steady state
χ	4.1744	h = 1 (disut. of work)	d	0.2627	borr. constr. hardly binds.
σ	2	risk aversion	Z	1	steady-state output $y = 1$.
ω_y	0.2	some value			
ω_{m}	0	middle-aged inc. endog.			
ω_o	0.2	roughly 40% of old age c			

Notes: Parameters chosen for the calibration of the 3-period OLG model.

Steady state in simulations

Table 2: Steady State 3-period OLG model

Variable	value	description	Variable	value	description
c^y	0.4651	consumption young	R	1.0117	nominal rate (gross)
c ^m	0.4666	consumption middle-aged	П	1	inflation (gross)
c°	0.4682	consumption old	W	0.9091	wage rate
d^{y}	0.2651	borrowing young	h	1	hours worked
b ^m	0.2651	saving middle-aged	у	1	variable output

Notes: steady state for the calibrated three-period OLG model. The steady state reported here refers to the case absent a borrowing constraint for the young.

Steady state in the calibration with the borrowing constraint is virtually identical.

The (no B's and C's)

$$A = -0.0676$$

The effect of a monetary easing

- o no borrowing constraint (the young take up the slack).
- young borrowing constrained.
 - what if borrowing constrained endogenous?

Monetary easing - no borrowing constraint

Monetary easing - borrowing constraint

Conclusions

What is next?

- o Model is simple in many dimensions:
 - To start with, it is a 3-period model.
 - Young do not enter with debt.
 - Old have MPC of 1.
 - Labor supply of young (or old).
 - Other savings vehicles.
 - Does result survive in more complex scenarios?
- More precisely, what ingredients deliver adverse effects of low interest rates?

Conclusions

- Perception in some parts of the world that low interest rates are counterproductive in stabilizing economic activity.
- This perception builds on a notion that low interest rates "hurt the saver."
- The current paper has formalized this notion in a simple New Keynesian three-period OLG setup.
- If private savings provide substantial support to retirement consumption, the increased desire by the middle-aged to save can render a monetary "easing" recessionary.
- o Effect exacerbated if borrowing constraint binds.

Policy Conclusions?

- Monetary policy may not be a good tool to stabilize activity in such cases.
- Indeed, it may be *risky* to use. Note that the response of middle-aged consumption to monetary policy switches sign at some level of private saving.
- Risk of "doubling down" with a monetary easing: On the one side of that point, increases output more strongly
- On the other side, low interest rates plunge the economy ever deeper into recession ...

Woodford, M. (1998), 'Doing Without Money: Controlling Inflation in a Post-Monetary World,' Review of Economic Dynamics, 1(1), pp. 173-219.